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ABSTRACT

The guidance and control (G&C) algorithms for enabling small-body proximity operations are
developed by using a model predictive control approach along with a convexification of the governing
dynamics, control constraints, and trajectory/state constraints. The open-loop guidance is solved
ahead of time or in a resolvable, real-time manner through the use of PWG (Pseudo Way-point
Generation), a technique developed in this research. The PWG scheme ensures required thruster
silent times during trajectory maneuvers. The feedback control is implemented to track the PWG
trajectories in a manner that guarantees the resolvability for the open-loop problem, enabling the
ability to update the G&C in a model-predictive manner. The schemes incorporate gravity models
and thruster firing times into discrete dynamics that are solved as a optimal control problem to
minimize fuel consumption or thruster energy expenditure. The optimal control problem is cast as
an LMI (Linear Matrix Inequality) and then solved through Semi-Definite Programming techniques
in a computationally efficient manner that provides convergence and constraint guarantees.

1Cleared for U.S. and foreign release, CL#05-2804.
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1 Introduction

Determination of an optimal trajectory for landing, hopping, proximity maneuvering, or take-
off on a small-body can be accomplished through classical way-point techniques, state-of-the-art
real-time trajectory generation methods, or a blending of the two. This blending, herein termed
PWG (pseudo way-point generation), utilizes onboard knowledge of the small-body properties to
autonomously generate state-space models at discrete time intervals during a trajectory maneuver.
The time intervals are chosen such that required thruster silence times, as well as set thruster firing
times are respected. The PWG can be utilized either as a reference trajectory for an outer-loop
tracking controller or as the basis of a receding horizon implementation. The main intention of
this work is to utilize PWG in the former capacity, with the possibility of updating the reference
trajectory as better estimates of the small-body properties become available.

The control inputs developed for PWG are determined through the solution of LMI’s (Linear
Matrix Inequalities) that optimize either fuel usage or total thrust energy. The trajectory deter-
mination and control inputs are iterated with a gravity model to converge upon a model-accurate,
open-loop trajectory and thus a set of admissible way-points. Figure 1 illustrates the iteration
process behind PWG.
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Figure 1: Iterative Process for Pseudo Way-point Generation

2 Development of Pseudo Way-Point Guidance Scheme

2.1 Governing Dynamics

The state dynamics of a spacecraft orbiting, landing, or conducting proximity operations at a small-
body are governed by the following equations of motion, expressed in a rotating frame (i.e. a frame
fixed to the small-body):

r̈rr + ω̇ωω × rrr + 2ωωω × ṙrr +ωωω × (ωωω × rrr) = u+ fff + ddd+ ggg (rrr) (1)
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where r ∈ R3 is the radius vector from the small-body center of mass to the spacecraft, ω ∈ R3

is the rotation rate of the body, u ∈ R3 are applied specific forces (i.e. thruster firings or other
control inputs - force per unit mass), f and d are disturbance force per unit mass (due to external
gravity disturbances, solar forces, or comet dust ejection), and g (r) is the gravity.

The small-body gravity field can be modeled through several methods, two of which are gravity
harmonics and polyhedral gravity models. Regardless of the chosen method, linearized models of
gravity can be used in the development of a guidance scheme:

ggg (rrr) ≈ ggg (rrrk) +
∂ggg

∂rrr

∣∣∣∣
rrrk

(rrr − rrrk) + δδδ(rrr,rrrk) = Grkrrr + gk + δδδk (2)

where rrrk is a reference radius, δδδk is a norm-bounded, higher-order gravity perturbation, gk =
ggg (rrrk)− ∂ggg

∂rrr

∣∣∣
rrrk

rrrk, and Grk = ∂ggg
∂rrr

∣∣∣
rrrk

.

The class of small-bodies to be studied will have stable and constant rotation rates (ω̇ = 0),
which is a necessary assumption in order to rewrite the dynamics of equation 1 in state space form:

x =
(
rrr
ṙrr

)
ẋ = A0x+Bu+Bg (Cqx) (3)
≈ Akx+Bu+Bgk (4)

where

A0 =
[

0 I

−ω̂ωω2 −2ω̂ωω

]
, B =

[
0
I

]
, Cq =

[
I 0

]
Ak = A0 +BGrkE, E =

[
I 0

]
.

and ω̂ωω is the 3× 3 matrix representation of the vector cross product ωωω × (·). Note, the subscript k
on Ak and gk indicates a dependence on chosen reference radius rrrk.

2.2 Discrete Dynamics Model

A discrete model of the dynamics is necessary for development of the PWG scheme. An assumption
is made that finite burns are used in the guidance and that they are constant during each burn
interval (though not necessarily the same constant), this facilitates the use of zero-order hold in
the discretization. The time interval ∆t used in the discrete dynamics is based on finite burns of
duration δf and required thruster silent times of duration δs such that ∆t ≥ δf + δs.

The solution to the equations of motion in equation 4 is

x(t) = eAk(t−t0)x(t0) +
∫ t

t0

eAk(t−τ)B(u(τ) + gk)dτ

which can be used to develop the discrete models over fixed time interval ∆t = tk+1 − tk.
During the firing portion (i.e. t ∈ [tk, tk + δf ] where tk + δf < tk+1 and u = u(tk) is a constant,

finite burn), the discrete solution becomes

x(tk + δf ) = eAk((tk+δf )−tk)x(tk) +
∫ tk+δf

tk

eAk((tk+δf )−τ)B(u(τ) + gk)dτ

= eAkδfx(tk) +
∫ δf

0
eAk(δf−τ)Bdτ · u(tk) +

∫ δf

0
eAk(δf−τ)Bdτ · gk
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and during the following silent portion (i.e. t ∈ (tk + δf , tk+1) with u = 0) the discrete solution
becomes

x(tk+1) = eAk(tk+1−(tk+δf ))x(tk + δf ) +
∫ tk+1

tk+δf

eAk(tk+1−τ)Bdτ · gk

= eAk(∆t−δf )x(tk + δf ) +
∫ ∆t

δf

eAk(∆t−τ)Bdτ · gk

Combining these two equations provides the discrete equations over each time interval ∆t:

x(tk+1) = eAk∆tx(tk) + eAk(∆t−δf )

∫ δf

0
eAk(δf−τ)Bdτ · u(tk) +

∫ ∆t

0
eAk(∆t−τ)Bdτ · gk

⇒ xk+1 = Ad,kxk +Bd,kuk + Ed,kgk (5)

where Ad,k = eAk∆t, Bd,k = eAk(∆t−δf )
∫ δf

0 eAk(δf−τ)Bdτ , Ed,k =
∫ ∆t

0 eAk(∆t−τ)Bdτ , gk fixed over
each ∆t,

u(tk) =
{
uk, t ∈ [tk, tk + δf ]
0, t ∈ (tk + δf , tk+1)

with uk constant, and k = 0, ..., N − 1. Note, gk can be chosen based on the state x(tk) or x(tk+1)
to provide discrete updates to gravity, thereby increasing the accuracy of the discrete solution.
Additionally, the dependence on the reference radius rrrk used to linearize gravity translates into
dependencies on k for all three matrices Ad, Bd, and Ed.

2.3 Solution of the Open-Loop Guidance Problem

The open loop trajectory is designed based on a discrete linear time varying system

xk+1 = Ad,kxk +Bd,kuk + Ed,kgk . (6)

As explained in the previous section, (6) is obtained by discretizing the continuous time dynamics

ẋ = A0x+Bu+Bg(Cqx) , (7)

along a given reference state trajectory. Once a trajectory for the open-loop problem is obtained,
it is used as the reference trajectory to re-linearize and discretize the dynamics in (7), to resolve
the open-loop problem, and so on. This is the iterative procedure to solve the open-loop optimal
control problem for the nonlinear system given in (7). Now, we will introduce additional notation
to describe the this process. First we introduce an index for trajectory iterations, j = 0, . . . ,m
where m is the index for the last trajectory in a given computation cycle, i.e. the variable names
are changed as follows

xk → xj,k , uk → uj,k , gk → gj,k ,

Ad,k → Aj,k , Bd,k → Bj,k , Ed,k → Ej,k .

Then, we can rewrite (6) as,

xj+1,k+1 = Aj,kxj+1,k +Bj,kuj+1,k + Ej,kgj,k, j = 0, . . . ,m− 1, k = 0, . . . , N − 1. (8)
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Now, we can describe the solution algorithm:

PWG Algorithm

Given an initial reference trajectory {x0,0, . . . , x0,N−1}, perform the following
steps for j = 0, . . . ,m− 1

1. Compute the discrete time model parameters Aj,k, Bj,k, Ej,k, k =
0, . . . , N − 1, by using {xj,0, . . . , xj,N−1} as explained sections 2.1 and 2.2.

2. Solve the following second-order cone programming problem to generate
{xj+1,0, . . . , xj+1,N−1} and {uj+1,0, . . . , uj+1,N−1}:

Minimize
∑N−1

k=0

(
α‖uj+1,k‖+ β‖uj+1,k‖2

)
+ ε‖Ec(x− xF )‖

subject to
xj+1,k+1 = Aj,kxj+1,k +Bj,kuj+1,k + Ej,kgj,k, k = 0, . . . , N − 1
xj+1,k ∈ Xo , k = 1, . . . , N − 1
uj+1,k ∈ U , k = 0, . . . , N − 1
xj+1,0 = xS or (xj+1,0 − xS)TP (xj+1,0 − xS) ≤ 1
Ee(xj+1,N − xF ) = 0


(9)

where Xo and U are convex sets that can be described by using second-
order cone constraints (including linear and quadratic inequalities), α =
0, β = 1 are used for minimum energy and α = 1, β = 0 for minimum
fuel problems, xF is the desired final state to be reached, xS is the current
state (measured), Ee is for the equality constraint at the end state, Ec is
for the contribution of the end state to the cost, ε ≥ 0, and P = P T > 0
(the ellipsoid constraint on the initial state will be useful if the trajectories
are recomputed at future times to guarantee resolvability, see Section 6).

Remark 1. In PWG algorithm, there is no guarantee that the algorithm generates a convergent
set of trajectories. One approach to assure such convergence is adding the following constraint to
the optimization problem (9) after the first computation in the trajectory iteration,

‖xj+1,k − xj,k‖ ≤ κ‖xj,k − xj−1,k‖ , k = 1, . . . , N − 1, j = 1, . . . ,m− 1 ,

where 0 < κ < 1. This additional constraint guarantees that a Cauchy sequence is generated for
each k, which imposes a convergence.

Remark 2. We relax some of the end state constraints and make it a part of the cost. This is
done to handle the some of the typical position state constraints. For example let the time sample
horizon N = 2, and x0 = xF that has zero velocity, and suppose that there is constant small body
gravity and zero rotation rate for simplicity. Also suppose that motion in the direction of the gravity
is limited to several meters (close proximity to the ground) not to collide with the small body. To
have xN = xF with two constant thrust firings, the spacecraft must be closer to the ground at time
indices k = 1 than at k = 0 and k = 2 to accommodate zero velocity error at the end. However,
depending on the firing and silent times, this proximity at the interior point must be such that
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collision is unavoidable, i.e. there exists to feasible trajectory for this case. One solution to this
problem is not to match the velocity at the end exactly, and allow limit cycling type motion about
the desired final position that can be accomplished in PWG by choosing ε > 0, and

Ee =
[
I 0

]
, Ec =

[
0 I

]
.

3 Implementation of Open-Loop Guidance Law

The open-loop PWG technique from equation 5 was implemented and tested for landing scenarios
on an Eros-like asteroid [5]. The following sections detail verification of the implementation and
evaluation of it for different gravity models.

In this report, we use the following example case in our simulations: Mass of the spacecraft is
400 kg, maximum available open loop thrust magnitude is 125 N, maximum feedback thrust is 20
N, the specific impulse for thrusters is Isp = 300 sec, the maneuver initial state (position, in meters,
and velocity, in meters/second,), x0, and desired final state, xF , are,

x0 =



8950
100
0

1.5
2
0

 , xF =



8450
0
0
0
0
0

 ,

and a state constrained must be imposed to ensure that the spacecraft does not fly subsurface, i.e.

cTx(t) ≥ 1 , where C =



1/8445
0
0
0
0
0

 .

3.1 Verification of Implementation

The PWG implementation was verified by zeroing the nonlinear portion of the dynamics (i.e. the
gravity). This simplification means that when the PWG method is implemented discretely it will
match the results of integration of the continuous equations of motion since the system becomes
linear. The results were as expected, as shown in figure 2. Note that the pseudo-waypoints are
shown as circles (labeled as Xdis, Ydis, and Zdis), and the integrated equations of motion provide
the solid trajectories that intersect the pseudo-waypoints.

3.2 Implementation with Harmonic Gravity Model based on Jn Coefficients

The PWG technique was implemented for a gravity model based on Jn harmonic coefficients [1].
This gravity model comes from a potential of the form

V (r) = −µ
r

[
1−

∞∑
n=2

Jn

(re
r

)n
Pn(sinL)

]
(10)
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Figure 2: Linear Dynamics Controlled Exactly by Discrete Method

where r = ||rrr||, Pn are Legendre polynomials of order n, L is the latitude z
r , µ is the gravitational

parameter for the small-body, re is a reference radius, and Jn are coefficients for the gravity har-
monics. This gravity model has a known linearization that is implemented as discussed in equation
2.

Results from the open-loop PWG method indicate that guidance without uncertainty can place
the spacecraft to within 3 centimeters of the desired landing location, and final velocity is very close
to the desired 0 mark. Figure 3 shows the results for the desired 240 second landing maneuver, and
figure 4 zooms in on the final 5 seconds of the maneuver to highlight the precision of the open-loop
PWG method. Note the built-in silent times seen in the thrust profiles, which are respected through
the PWG technique.
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Figure 3: Guidance with PWG-based Control for Dynamics with Jn Harmonic Gravity
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Figure 4: Zoom of Results in Figure 3 Depicting Landing Precision
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3.3 Implementation with a Numerical-Gradient-Based Gravity Model

The gravity data for Eros contains up through fourth-order harmonics; however, the published
coefficients are based on a more complicated spherical harmonic model for which linearizations are
not currently available. This model has the form

V (r, θ, φ) =
(µ
r

)[
1 +

∞∑
n=1

n∑
m=0

(re
r

)n
Pmn (cos θ) {Cnm cosmφ+ Snm sinmφ}

]
(11)

The prior data based on the Jn coefficients was computed through a fit of the published Eros data.
However, since the published data provides a much more detailed gravity model, the fit for Jn coeffi-
cients actually introduces significant error in the gravity model. When the PWG method is utilized
to develop guidance based on the linearized Jn gravity and the resultant control is applied to the dy-
namics integrated with the second gravity model given in equation 11, the results are very poor (See
figure 5). As seen in the figure, the pseudo-waypoints are not properly tracked due to an improper
gravity model.
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Figure 5: Guidance from Jn-Model has Poor Performance with Sn,m- and Cn,m-based Gravity

Fortunately, rather than using an improper gravity linearization for developing the discrete
control, numerical gravity gradients instead provide a vast improvement, as shown in figure 6
where the implementation of the discrete controller shows that the system response now properly
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tracks the pseudo-waypoints. This is a very promising method when a linearization is not available
for a particular gravity model.
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Figure 6: Improved PWG-Guidance through Numerical Gravity Gradients
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4 Development of Feedback Control Scheme for Trajectory Track-
ing

In this section, we describe a feedback control method to track the trajectory generated by the
guidance scheme. First we develop an approximate discrete-time dynamics of the tracking error.
The discrete model is used for feedback design in order to accommodate the required thruster silent
times, i.e. the feedback control input (such as the feed-forward control) is assumed to be active on
prescribed time intervals.

Suppose the dynamics of the real system is given by,

ξ̇ = A0ξ +B(u+ v) +Bφ(Cqξ) (12)

where ξ is the actual state containing the position and the velocity, φ is the real gravitational
acceleration, v is the feedback control force, and

Cq =
[
I 0

]
.

Note that the model of the real dynamics used for the guidance is,

ẋ = A0x+Bu+Bg(Cqx) ,

where g is the model of the gravitational acceleration. The error dynamics is given by,

η̇ = A0η +Bv +B[φ(Cqξ)− g(Cqx)] , (13)

where
η , ξ − x . (14)

Then we have,
η̇ = A0η +Bv +B(ψ + w) , (15)

where

ψ = φ(Cqξ)− φ(Cqx) ,
w = φ(Cqx)− g(Cqx) .

Now, if we discretize (15) by assuming that the feedback control is nonzero on (tk, tk + δf ] and
zero on (tk + δf , tk + ∆t], and ψ and w are constant on (tk, tk + ∆t), we obtain the following
approximation to the discrete dynamics (see Section 2.2 for details),

ηk+1 ≈ Adηk +Bdvk + Ed(ψk + wk) . (16)

We will use (16) as the model to design the feedback component of the control. This is clearly
an approximate model of the actual discrete dynamics. Since the feedback design will be done by
characterizing the terms ψk and wk in a conservative manner, the design results are expected to
be valid for the actual system.

The feedback control is given by

v(t) =
{
K(ξ(tk)− x(tk)), t ∈ (tk, tk + tf ];
0, t ∈ (tk + tf , tk+1].

k = 0, 1, 2, . . . , (17)

where K is a constant feedback gain matrix. We introduce the following assumptions for the design
of the feedback gain matrix.
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Assumption 1. The derivative of the real gravity φ is in a convex and close set G, i.e.

∂φ

∂q
(q) ∈ G , ∀ q . (18)

Assumption 2. There is a known bound on the accuracy of the real vector, i.e. there exists σ > 0

‖φ(q)− g(q)‖ ≤ σ , ∀ q . (19)

Note that both vector q in above assumptions represent the position vector relative to a rotating
frame of reference. In our model, the origin of this frame is taken as the center-of-mass of the small
body.

In reality, it is not possible to satisfy the conditions given in Assumption 2 and 1 everywhere in
position-space. This can easily be seen by considering the gravity field in the closed neighborhood of
the center-of-mass of the small body. The justification of these assumptions comes from the fact that
the proximity operations around a small body take place in a restricted region in position-space.
The feed-forward control design includes position constraints that will guarantee that nominal
trajectory lives in a bounded region away from the center-of-mass, call it Xo (not to collide with
the small body). Then we will guarantee that the actual trajectories live in an invariant ellipsoid,
εP , around the nominal trajectories by assuming that all the actual trajectories are in some bounded
region X in the position-space. Here set X satisfies that Xo+εP ⊆ X , where + between sets forms
a new set that is obtained by the vectorial sum of the elements in both sets. Then, we find the
bounds σ and G in Assumption 2 and 1 for set X . Then, the analysis presented later will be valid for
all trajectories starting in X . The following describes a general form of the geometrical constraints
on the invariant ellipsoid εP in order to guarantee the satisfaction of Xo + εP ⊆ X ,

εP ⊆ (Γ1 ∩ . . . ∩ Γn1) ∩ (Λ1 ∩ . . . ∩ Λn2) (20)

where

Γn = {η : aTnη ≤ 1}, n = 1, . . . , n1, (21)
Λn = {η : ηTYnη ≤ 1}, n = 1, . . . , n2. (22)

The following theorem establishes the basis of an LMI based feedback control design procedure
to generate an invariant ellipsoid with desired properties.

Theorem 1. Consider the discrete time system (16) satisfying Assumption 1 and Assumption 2.
Furthermore assume that G in Assumption 1 is given by,

G = {Θ : ΘTΘ ≤ γ2I}, (23)

where γ > 0. Suppose that there exist matrices Q = QT > 0 and L, and scalars α > 0 and λ > 0
such that the following set of matrix inequalities are satisfied,

(λ− 1)Q 0 0 QATd + LTBT
d QCTq

0 −αI 0 αγETd 0
0 0 −λI σEd 0

AdQ+BdL αγEd σEd −Q 0
CqQ 0 0 0 −αI

 ≤ 0 , (24)
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[
Q LT

L V 2
maxI

]
≥ 0 , (25)

aTnQan ≤ 1 , n = 1, . . . , n1, (26)[
Q Q
Q Y −1

n

]
≥ 0 , n = 1, . . . , n2 , (27)

where Vmax is a bound on the norm of feedback control. Then, the control law given by

vk = Kηk , where K = LQ−1 , (28)

renders εP = {η : ηTQ−1η ≤ 1} an invariant set for (16), i.e. ηk ∈ εP , k = 1, 2, 3, . . . , for any
solution of (16) with η0 ∈ ε. Additionally, εP satisfies 20, and

‖vk‖ ≤ Vmax , ∀ ηk ∈ εP .

The matrix inequalities (25), (26), and (27) are LMIs, but (24) is a BMI (bilinear matrix
inequality). However note that (24) is an LMI for a given λ. Also note that λ ∈ [0, 1) in order to
have a feasible solution for matrix inequality (24). Consequently an LMI based design procedure
can easily be constructed by using Theorem 1 via a line search on λ as follows: Apply a line search
on λ ∈ [0 , 1) to maximize the volume of εP , where for a given λ the volume of εP can be maximized
via the following SDP [2],

Minimize log(det Q−1)

subject to Q = QT > 0, α > 0 , and equations (24), (26), (27) . (29)

4.1 Rationale for Accurate Gravity Models in Trajectory Generation

In this section, we discuss the rationale behind using accurate gravity models to achieve better
performance in small body proximity operations. The main operational constraint in the operations
is the required thruster silent time. In these time periods, there is no control authority to keep the
spacecraft in a desired region, and the tracking error can become larger. To analyze the error, η,
dynamics that is given by,

η̇ = A0η +Bv +B[ψ + w] ,

where w is the disturbance due to mismatch of the real gravity and the the model of the gravity,
i.e.

ψ(t) = φ(Cqx(t))− g(Cqx(t)) ,

where x(·) defines the nominal trajectory. The assumption on this disturbance is

‖w‖ ≤ γ ,

where γ > 0 defines the bound on the modelling error. Our current assumption is that the gravity
modelling errors are in the order 1− 5% of the actual gravity. In an extreme case, we can neglect
gravity for trajectory design, i.e. g ≡ 0. In this case, the disturbance bound γ is at least 20 times of
the corresponding bound with 1− 5% modelling error. This implies significantly reduced tracking
performance due to thruster silent periods. Indeed, this is an intuitive result. When an accurate
gravity model is used, the trajectory is optimized such that the state of the spacecraft is favorable at
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the end of a firing period, which leads to a motion ending at a desired state after the thruster silent
period. However, when the trajectory is designed based on an inaccurate model, the spacecraft is
forced to follow an unnatural path. Then, when the thruster activity stops, the spacecraft is not
at a favorable state to track the nominal trajectory, and it can deviate significantly from it before
the thruster activity is resumed. This puts an inherent limit in the tracking performance imposed
by the length of thruster silent time independent of the feedback control authority.

In Section 7, a simulation is depicted in Figure 10 where a trajectory is generated by using a
cubic spline for given initial and desired final state. This implies that a double-integrator nominal
state dynamics is assumed (i.e. gravity as well as asteroid rotation rate are both zero). The
simulation is performed with the same gain matrices used in the other simulations. The results
clearly shows an unacceptable tracking performance.

5 Implementation of Feedback to Track Nominal PWG Trajecto-
ries

The feedback technique developed in Section 4 was incorporated into simulations of small-body
landings that utilize the PWG scheme to generate open-loop guidance trajectories. The addition
of feedback made significant improvements to landing precision when disturbance uncertainties in
the gravity model were included. Gravity disturbances were generated from a random-number
generator with a maximum disturbance of 5% from nominal gravity models. For the simulations,
the numerical-gradient-based gravity model from subsection 3.3 was utilized as well. Further, the
feedback was implemented so that feedback thruster firings occur simultaneously with open-loop
firings, thrust preserving the structure of built-in thruster silence times.

Figure 7 shows the landing position is within 1 meter of desired (and velocity is nullified) when
feedback is enabled to counter an unknown 5% error in the gravity model. The figure also shows the
simultaneous open-loop and feedback firings, as computed from the PWG guidance and feedback
schemes, respectively. Notice also that the feedback states line up with the desired waypoints, as
determined through the PWG scheme. No final proximity controller is implemented in this example
in order to demonstrate the precision enabled by the PWG with feedback scheme alone.
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Figure 7: Feedback Designed to Handle Errors in Gravity Model

Without closing the loop through feedback, the 5% uncertainty in gravity proves detrimental
in the ability to land with open-loop-only methods. As shown in figure 8, the spacecraft lands off
mark by more than 75 meters and one component of velocity is off by about 0.75 meters/second;
further, in the zoom of the end time, note the large error between actual X-component states and
the desired waypoints.
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Figure 8: Open-Loop-Only Control is Incapable of Handling Errors in the Gravity Model

6 Resolvability of the Open-Loop Guidance Problem and Conver-
gence to the Target

In this section we introduce a technique that guarantees the resolvability of the open-loop guidance
problem for any time horizon. Since it is assumed that there will be finite number of open-loop
trajectory computations, resolvability implies the convergence to the target, which will later be
described precisely. The following assumption is needed for resolvability:

Assumption 3. Consider AF , BF , EF and gF are parameters for (6) obtained by discretizing
(7) as explained in sections 2.1 and 2.2. Assume that there exists some uF ∈ U (see (9) for a
description of U) such that

xF = AFxF +BFuF + EF gF . (30)

Now, suppose that a trajectory is computed via PWG algorithm, and {xm,0, . . . , xm,N−1} is
generated. Furthermore, the feedback control law (28) with gain K computed as explained in
Theorem 1 is applied to track {xm,0, . . . , xm,N−1}. Consider re-execution of the PWG algorithm
at a time corresponding to time index n, 0 < n < N − 1, of the previous solution, with an initial
reference trajectory {xm,n, . . . , xm,N−1, xF , . . . , xF }.
In this case, {xm,n, . . . , xm,N−1, xF , . . . , xF } also defines a feasible solution to the optimization prob-
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lem (9) given Assumption 3. As a result, one can guarantee resolvability by using {xm,n, . . . , xm,N−1, xF , . . . , xF }
as the initial reference trajectory, and replacing the initial condition constraint x1,0 = xS , wherexS
is the measured state at the time of re-computation of the trajectory, with

(x1,0 − xS)TP (x1,0 − xS) ≤ 1 , (31)

with P = Q−1 where Q = QT > 0 is the matrix defined in Theorem 1. This follows from the fact
that (xm,n − xS)TP (xm,n − xS) ≤ 1, where xm,n is the first state in the initial reference trajectory
for re-computations (which is a result of Theorem 1). In later iterations in PWG algorithm, we use
the following constraint on the initial condition,

xj,0 = x1,0 , j = 2, . . . ,m. (32)

Consequently, we obtain resolvability of the open-loop problem once an initial trajectory is
generated by PWG algorithm. Since we resolve the open-loop problem for finite number of times,
there exists a last trajectory generated, that will be followed till reaching xF . Since feedback action
guarantees a tracking of this trajectory with an error ellipsoid described by εP = {η : ηTPη ≤ 1},
where η is the vector for tracking error, the actual trajectory will converge to εP neighborhood of
xF , i.e. there exists some time Tf such that

(ξ(k∆t)− xF )T P (ξ(k∆t)− xF ) ≤ 1 , ∀ k∆t ≥ Tf ,

where ξ is the actual (measured) system state.

7 Example Simulations

Example simulations are presented in this section. In these simulations, we use Ee and Ec in PWG
as defined in Remark 2. The only state constraints is that the x1 coordinate of the position must
remain larger than 8445 meters, x = 8445 meters is 5 meters below the target point which also
defines a point on the surface of Eros. To satisfy this constraint, a position constraint x1(t) ≥ 8455
is imposed at all time nodes except at the end point. First simulation is given in Figure 9, where
a single trajectory is obtained by solving PWG and followed by the feedback control. The results
show that a feasible solution is obtained with a 2.4 kg fuel use. The same simulation is repeated in
Figure 10 where a cubic position time profile is used, and the feedback control loop is closed around
it. The results clearly show that the feedback action is not sufficient in the cubic case to generate a
feasible solution, and the spacecraft collides with Eros (see Section 4.1 for a discussion). The third
simulation results are given by Figure 11, where a shrinking horizon solution approach is used, and
the open-loop trajectory is updated on the way to the target at every two samples in time; this
example demonstrates resolvability, as discussed in Section 6. Again, we obtain a feasible solution
to the problem with a fuel use of 2.3 kg. The fuel gain relative to the single trajectory solution is
not significant. The actual trajectory stays longer at a higher altitude than the final position when
compared with the single trajectory solution.
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Figure 9: A Single Trajectory Solution
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Figure 10: Cubic Trajectory Solution
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Figure 11: Shrinking Horizon Solution

8 Conclusions

The PWG method provides a suitable open-loop guidance method that can be augmented with an
additional feedback controller or be implemented in receding horizon control with guarantees on
resolvability. When linearizations are available for gravity models, the PWG technique provides
very accurate open-loop guidance when disturbances are not present. In addition, when the gravity
linearizations are not available, numerical gradients still provide a very solid means of computing
open-loop guidance with the PWG method. This technique is widely applicable for generating the
open-loop guidance portion of maneuvers for any body (planet, moon, small-body) and is valid
for any form of maneuver (trajectory transfer, landing, hoping, and take-off). Wrapping feed-
back around the PWG technique allows for significant robustness to uncertainty, and the feedback
technique can be designed to respect the built-in thruster silent times of the PWG scheme.

Appendix

A Proof of Theorem 1

We need the following lemma in order to prove Theorem 1.

Lemma 1. Consider the discrete time system (16) satisfying Assumption 1 and Assumption 2.
Furthermore assume that G in Assumption 1 is given by (23). Suppose that there exists some
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P = P T > 0 and associated Lyapunov function Vk = ηTk Pηk such that

Vk+1 − Vk + λ

(
Vk −

wTk wk
σ2

)
+ β(γ2ηkC

T
q Cqηk − ψTk ψk) ≤ 0 , ∀ ηk, ∀wk, ∀ψk, (33)

with some λ ∈ [0 , 1) and β > 0. Then εP = {η : ηTPη ≤ 1} is an invariant set for (16), i.e. if
the initial state is in εP , so is the rest of the trajectory.

Proof. First, since G is a closed and convex set [3], for any ψ there exists η and G ∈ G such that

ψk = Gηk .

This implies that
ψTk ψk = ηTk G

TGηk ≤ γ2ηTk ηk .

Note that εP is an invariant set for (16) if

Vk+1 ≤ 1 , ∀Vk ≤ 1, ∀wTk wk ≤ σ2, and ∀ γ2ηTk C
T
q Cqηk ≥ ψTk ψk . (34)

By applying the S-procedure [2], the existence of positive scalars c1, c2, and c3 satisfying the
following inequality is sufficient for the satisfaction of the inequalities in (34),

Vk+1 − 1 + c1(1− Vk) + c2(σ2 − wTk wk) + c3(γ2ηTk C
T
q Cqηk − ψTk ψk) ≤ 0 , ∀ ηk, ∀wk, ∀ψk .

This inequality is equivalent to

Vk+1 − c1Vk − c2w
T
k wk − (1− c1 − c2σ

2) + c3(γ2ηTk C
T
q Cqηk −ψTk ψk) ≤ 0 , ∀ ηk, ∀wk, ∀ψk . (35)

Note that inequality (33) can equivalently be written as

Vk+1 − (1− σ2λ)Vk − λwTk wk + β(γ2ηkC
T
q Cqηk − ψTk ψk) ≤ 0 , ∀ ηk, ∀wk, ∀ψk .

Letting c1 = 1− λ and c2 = λ
σ2 , the above inequality implies the inequality (35), which completes

the proof.

Proof of Theorem 1. Inequality (33) gives a sufficient condition to have εP an invariant set for
system in (16), and it is equivalent to the following matrix inequality for the closed loop system
with vk = Kηk, ATc PAc − (1− λ)P + βCTq Cq γATc PEd σATc PEd

γETd PAc −βI + γ2ETd PEd γσETd PEd
σETd PAc γσETd PEd −λI + σ2ETd PEd

 ≤ 0 ,

where Ac = Ad +BdK. This inequality is equivalent to, ATc PAc − (1− λ)P + βCTq Cq 0 0
0 −βI 0
0 0 −λI

+

 ATc
γETd
σETd

P ( Ac γEd σEd
)
≤ 0 .
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By using Schur complements [4], the inequality above is equivalent to,
−(1− λ)P + βCTq Cq 0 0 ATc

0 −βI 0 γETd
0 0 −λI σETd
Ac γEd σEd1 −P−1

 ≤ 0 . (36)

Pre and post-multiplying inequality (36) by

diag([P−1, I, I, I]),

and letting Q = P−1 and L = KP−1, we obtain the following equivalent characterization of
inequality (36) as,

−(1− λ)Q+ βACTq CqQ 0 0 QATd + LTBT
d

0 −βI 0 γETd
0 0 −λI σF Td

AdQ+BdL γEd σFd −Q

 ≤ 0 .

Applying Schur complements one more time, letting α = 1
β , we obtain

−(1− λ)Q 0 0 QATd + LTBT
d QCTq

0 − 1
αI 0 γETd 0

0 0 −λI σF Td 0
AdQ+BdL γEd σFd −Q 0

CqQ 0 0 0 −αI

 ≤ 0 .

Now, by pre and post-multiplying the inequality above with

diag([I, αI, I, I, I])

it can be shown to be equivalent to inequality (24). Consequently satisfaction of (24) guarantees
that εP is invariant set for (16). Once invariance of εP is established, inequality (25) guarantees
that ‖Kηk‖ ≤ Vmax , ∀ ηk ∈ εP [2].

The polytope described by (21) contains εP if and only if (26) are satisfied. Also, the region
described by (22) contains εP if and only if

Q−1 − Yn ≥ 0 , n = 1, . . . , n2 .

By pre and post-multiplying this inequality by Q, it is shown to be equivalent to

Q−QYnQ ≥ 0 ,

which is equivalent to (27) by applying Schur complements. As a result, the satisfaction of inequal-
ities (26) and (27) guarantee the satisfaction of (20). This completes the proof of the theorem.
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